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We are familiar with the equation for the slope of a line:
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 are two points on the line.

In terms of functions, this becomes:
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In a previous section, we estimated the slope of the tangent line at a point a by selecting a point x near a and calculating the slope of the secant line. Letting 
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, we have:
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, also known as the difference quotient.

We argued that our estimate of the slope of the tangent is more accurate the closer x is to a. In other words, we are taking the limit of the function as x approaches a:
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This is the slope of the tangent line to the curve at the point (a, f(x)).

If we let the distance from x to a equal h, then this implies:

x-a=h

x=a+h

Now, we want to take the limit as the distance from x to a goes to zero, or as h goes to zero.

We now have:
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, also known as instantaneous rate of change.
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