Copyright 2004, ISBN: 0-618-31796-1

Ron Larson, Robert P. Hostetler

Houghton Mifflin

Chapter 0. Prerequisites

Section 1 . Review of Real Numbers and Their PropertiesChapter 1. Trigonometry

Section 2 . Solving Equations

Section 3 . The Cartesian Plane and Graphs of Equations

Section 4 . Linear Equations in Two Variables

Section 5 . Functions

Section 6 . Analyzing Graphs of Functions

Section 7 . A Library of Functions

Section 8 . Shifting, Reflecting, and Stretching Graphs

Section 9 . Combinations of Functions

Section 10 . Inverse Functions

Section 1 . Radian and Degree MeasureChapter 2. Analytic Trigonometry

Section 2 . Trigonometric Functions: The Unit Circle

Section 3 . Right Triangle Trigonometry

Section 4 . Trigonometric Functions of Any Angle

Section 5 . Graphs of Sine and Cosine Functions

Section 6 . Graphs of Other Trigonometric Functions

Section 7 . Inverse Trigonometric Functions

Section 8 . Applications and Models

Section 9 . Chapter Test

Section 1 . Using Fundamental IdentitiesChapter 3. Additional Topics in Trigonometry

Section 2 . Verifying Trigonometric Identities

Section 3 . Solving Trigonometric Equations

Section 4 . Sum and Difference Formulas

Section 5 . Multiple-Angle and Product-to-Sum Formulas

Section 6 . Chapter Test

Section 1 . Law of SinesChapter 4. Complex Numbers

Section 2 . Law of Cosines

Section 3 . Vectors in the Plane

Section 4 . Vectors and Dot Products

Section 5 . Chapter Test

Section 1 . Complex NumbersChapter 6. Topics in Analytic Geometry

Section 2 . Complex Solutions of Equations

Section 3 . Trigonometric Form of a Complex Number

Section 5 . Chapter Test

Section 1 . Lines

Section 2 . Introduction to Conics: Parabolas

Section 3 . Ellipses

Section 4 . Hyperbolas

Section 5 . Rotation of Conics

Section 6 . Parametric Equations

Section 7 . Polar Coordinates

Section 8 . Graphs of Polar Equations

Section 10 . Chapter Test