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The Complex Plane

We are going to modify our coordinate plane, which uses the x-y axes.

The x-axis will be replaced by the real axis, and the y-axis will be replaced by the imaginary axis. The x will be replaced by a, and the y will be replaced by b. 

We will call this the complex plane, and a point on the plane will be denoted (a, b), where a is the distance along the real axis, and b is the distance along the imaginary axis.

Plot the point (a, b) on the complex plane. 

Draw a line segment from the origin to the point. In a previous chapter, we called this a vector. We will call this vector r.

Draw a vertical line segment, perpendicular to the real axis, from the point down to the real axis.

We now have a right triangle, and the angle is the measure of the spread between the real axis and the vector.

The length of the vector r can be obtained from the Pythagorean Theorem:
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In the book, the length of vector r is referred to as the absolute value of the complex number:
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This is because the absolute value bars are used to mean magnitude. We can also denote this as |z|, and is called the modulus of z.

A complex number is in the form of:
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The right side of this equation should be familiar.

Trigonometric Form of a Complex Number

Looking at our drawing and using trigonometry, we can see that:
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Thus, the trigonometric form of a complex number is:
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where r is called the modulus and θ is called the argument.

Multiplication and Division of Complex Numbers

	Given two complex numbers:
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	Multiplication – multiply the moduli and add the arguments:
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	Division – divide the moduli and subtract the arguments:
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The nth Power of a Complex Number – DeMoivre’s Theorem

	Given a complex number:
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	Take the nth power of the modulus and multiply the argument by n:
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The nth Root of a Complex Number

With a modified DeMoivre’s Theorem, we can say:

	Take the nth root of the modulus and divide the argument by n:
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However, due to the cyclic nature of angles, we can add multiples of 2π to θ.

There are n nth roots of a complex number. The multiples of 2π we add to θ range from 0 to n-1:

	θ+2(0)π
	θ+2(1)π
	θ+2(2)π
	θ+2(n-1)π


Letting k be the index denoting 0 to n-1, our general formula becomes:
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